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The expressions derived for the calculation of multiple diffraction patterns for a

perfect crystal in the framework of the kinematical theory are compared with

the relevant result of the kinematical power-transfer equation deduced for a

mosaic crystal. It is shown that the results of the two concepts differ appreciably.

1. Introduction

As pointed out in Ro-00c,1 multiple diffraction in the frame-

work of the kinematical theory was first considered by

Renninger (1937). In x7 of his famous paper, two kinematical

approaches are discussed, the ‘simplest approach’ (einfachster

Ansatz), which is used by the author, and a ‘more sophisti-

cated approach’ (verfeinerter Ansatz), which is similar to the

power-transfer equation presented by Moon & Shull (1964)

for neutron diffraction. Whereas chapters 5.2 and 5.4 of

Chang’s book (Chang, 2004) are mainly based on the paper by

Moon & Shull (1964), chapter 5.5 refers to Ro-00c and Ro-03.

Some of the statements as well as the conclusions drawn by

Chang (2004) at the end of his chapter 5, namely ‘This (the

result of the power-transfer equation, expression 5.36 in his

book) is the same as that derived from Renninger’s simplest

approach (the author’s result)’ and ‘the appreciable inter-

ference, especially the profile asymmetry, can be observed when

a perfect crystal or strong reflection are involved. This effect is

therefore dynamical rather than kinematical. The addition of

the interference term to the expression for integrated intensity is

reasonable from the physics point of view. However, it is not

mathematically rigorous, because such a term cannot be

obtained directly from the power-transfer equation governing

the multiple-wave diffraction process. In fact, to reveal the

phase effect, the EM wavefields rather than the reflection

powers need to be considered in describing the multiple-wave

diffraction behaviour’ need some rectification, comments and

completion.

To be able to do this, in the first step the relevant expres-

sions derived for perfect crystals in the framework of the

kinematical theory by the author, as well as the relevant result

of the power-transfer equation introduced by Moon & Shull

(1964) and used in chapter 5 of Chang’s book, are collated in

the next two sections.

2. Summary of expressions derived in the framework of
the kinematical approach for an ideally perfect
spherical crystal bathed in the incident X-ray beam

In Ro-04-(Fig. 1), the conditions of a three-beam case are

shown. s0 is a unit vector parallel to the beam incident on the

crystal and s1 and s2 are unit vectors parallel to the simulta-

neously diffracted primary and operative reflection, respec-

tively. According to Zachariasen (1945), the electric vectors E1

and E2 corresponding to the diffracted beams depend on the

direction of diffraction and the electric vector of the incident

beam ÊE0 according to

E1 ¼ �s1 � ðs1 � ÊE0Þ ð1Þ

E2 ¼ �s2 � ðs2 � ÊE0Þ: ð2Þ

In the case of multiple diffraction [see Ro-04-(x2)], the beam

diffracted in the s2 direction with the electric unit vector ÊE2 is

re-diffracted in the s1 direction (Renninger, 1937) generating

the Umweg wave with the electric unit vector ÊE21 ¼ E21=jE21j.

Assuming that the two beams in the s1 direction are excited

independently of each other, E21 is given by

E21 ¼ �s1 � ðs1 � ÊE2Þ ¼ s1 � ðs1 � ðs2 � ðs2 � ÊE0ÞÞÞ=jE2j:

ð3Þ

This Umweg wave interferes with the wave represented by ÊE1.

In general, the two electric unit vectors ÊE1 and ÊE21 will not be

parallel. Therefore, according to Hecht (1989, x9.1), the

intensity of the superimposition of the two waves is given by

I ¼ I1 þ I21 þ 2ðI1I21Þ
1=2 cosðff ÊE1; ÊE21Þ cos ’; ð4Þ

where I1 and I21 are the intensities of the two waves, respec-

tively, cosðff ÊE1; ÊE21Þ is the cosine of the angle between the two

unit vectors ÊE1 and ÊE21 and ’ is the phase difference between

the two waves. The evaluation of the angles ff ÊE1; ÊE21 and ’ is

fully discussed in Ro-04. The derivation of the intensities I1

and I21 is based on Renninger’s ‘simplest approach’.

Starting with Ro-00c-(1) given by Renninger (1937), it was

shown in Ro-00c-(x2) and Ro-00c-(x3.1) that the power

received in the counter during the rotation about the  axis is

given by [Ro-00c-(20)]

1 Most of the expressions and figures discussed in this paper were derived or
presented in previous papers of the author. These expressions, figures,
Appendices etc. will be referenced in the following by the abbreviation Ro-
xxy-(z), where xx represents the two last digits of the year of publication, y
stands for a, b, c etc. if more than one paper in the respective year is referenced
and z represents the number of the expression, figure, Appendix etc. under
consideration.
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The approximations necessary to obtain the expression (5) are

fully discussed in Ro-00c. The term in the curly brackets in (5)

corresponds to I1, the second term to I21. For simplicity, in a

first step in Ro-00c, the polarization effects were not consid-

ered. The corresponding interference term (Klein & Furtak,

1988, chapter 5) results in Ro-00c-(21). Taking into account

the polarization of the beams I1 and I21, the derivation of the

interference term given by Hecht (1989), i.e. the third term of

expression (4) has to be used:

I
ð!Þ
interferð Þ ¼ 2½fI

ð!Þ
prim � I

ð!; Þ
Aufh f ð ÞgIð!; ÞUmwegf ð Þ�1=2

� cos ’ð Þ cosðff ÊE1; ÊE21Þ: ð7Þ

I0 in (6) is the incident intensity (energy s�1 cm�2) and qs0
is

the cross section of the crystal volume normal to the incident

beam, i.e. ðI0qs0
Þ = J0, the incident power, and �h is defined by

1=�h ¼ r0�jFhjTK=Vcell; ð8Þ

where r0 is the classical electron radius, � is the wavelength of

the radiation used for diffraction, jFhj is the modulus of the

complex structure factor, T is the temperature factor [Ro-03-

(5)] and Vcell is the volume of the unit cell. K is the polari-

zation coefficient, defined by Ro-04-(16). The Lorentz factors

L! and L , corresponding to the rotation about the ! and  
axis, respectively, were developed in Ro-92. L! is defined by

[Ro-92-(9h), -(10c), -(16), Ro-00a-(15)]

L! ¼ �!=ð‘Umweg;!�Þ � 1=sin 2�prim ð9aÞ

and L [Ro-92-(19a),-(19c)]

L ¼ � =ð‘op; �Þ � 1=½�hn
op cos �prim sin ��; ð9bÞ

where ‘i is the ‘effective thickness’ of the Ewald sphere in the

direction of the reflected beam i, �prim is the Bragg angle of the

primary reflection and hn
op and � are defined in Ro-03-(Fig. 1).

The validity of the new generalized Lorentz factor L in cases

where the approximation given in (9b) results in an infinite

value is demonstrated in Ro-00d and Ro-01. L! is essential for

comparing the intensities of multiple diffraction patterns of

different primary reflections (Ro-95) or for the estimation of

the intensity of multiple diffraction events on an absolute

scale.

The extinction-corrected mean thickness of the ideally

perfect crystal sample in the direction of the incident beam, �ttsi
,

is defined by [Ro-00c-(6)]

�ttsi
¼ ðVcry=qsi

Þyp; ð10Þ

where Vcry is the crystal volume and qsi
is the cross section of

the crystal volume normal to the beam incident in the si

direction and yp is the primary extinction correction discussed

in Ro-00b.

It was found by comparisons of theoretical and experi-

mental multiple diffraction patterns that f ð Þ can be well

approximated by an asymmetric normalized split-pseudo-

Voigt function consisting of two halves, PVð Þleft and

PVð Þright, with different widths and different mixing par-

ameters for the left and right sides, respectively, but with

common maximum value, where PVð Þ is the normalized

pseudo-Voigt function [Ro-02b-(Appendix A) and Ro-02b-

(Fig. 14)]
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1
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: ð11Þ

 0 corresponds to the value of the variable in the peak

maximum. The mixing parameter � [see Ro-03-(8) for an

approximate estimation of this parameter] is a measure of the

Lorentzian contribution to the pseudo-Voigt distribution.

� total
integral, the total integral width of the reflection with respect

to the rotation about the  axis, mainly depends on the size of

the perfect crystallites and the divergence and wavelength

spread of the incident beam. In the case of a mosaic crystal,

additionally the mosaic spread will broaden the distribution.

� total
integral ¼ ð� crystal size þ� divergence þ� wavelength spread

þ� mosaic spreadÞ: ð12Þ

The concept of the evaluation of � total
integral by means of purely

geometrical considerations is discussed in detail in Ro-92. The

validity of this approach, questioned by Mathieson (1994), is

proved in Ro-02a and Ro-02b. The presentation and discus-

sion of the extensive expressions developed for use in the

program UMWEG (Ro-03) for the calculation of the peak

widths for all possible experimental conditions, although not

published in detail until now, is beyond the scope of this paper.

The phase difference ’ð Þ between the primary and the

Umweg wave [see Ro-03-(9)] is discussed in detail in Ro-04-

(x2) and Ro-04-(Appendix A).

According to Ro-00c, Ro-03 and Ro-04, the total power

Is1
ð Þtotal, received in the counter during the rotation about the

 axis, is approximated by [Ro-03-(1)]

Is1
ð Þtotal ¼ gð�1;2Þ I

ð!Þ
prim þ

P
event

½Ið!Þs1
ð Þevent�

� �
; ð13Þ

where, in the case of X-ray tubes, gð�1;2Þ depends on the

intensity ratio of the K�1 and K�2 radiations, and in other

cases it is equal to 1 and the subscript ‘event’ refers to a

particular three-beam case.
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3. Power-transfer equations. Ideally mosaic crystal
plate

For a plane parallel plate with thickness T, consisting of many

plate-like ideal crystal blocks, i.e. for an ideal mosaic crystal,

the power-transfer equation can be expressed as (Moon &

Shull, 1964; Chang, 2004, expression 5.4)

�
dPi

dx
¼
�0Pi

�i

þ
X

j

QjiPj

�j

�
QijPi

�i

� �
; ð14Þ

where Pi is the power of the i wave, �0 is the linear absorption

coefficient and � i is the absolute value of the direction cosine

of the wavevector of the ith wave with respect to the surface

normal of the crystal plate, and Qij is the linear reflection

coefficient of the reflection from the incident i wave to the

reflected j wave.

An approximate solution to the power-transfer equation for

a mosaic crystal plate is given by (Chang, 2004, expression

5.36)
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1
2

P
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ðQprimls0
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Qcoopls1
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Qcoopls2

Þ;

ð15Þ

where the subscripts have the same meaning as in the fore-

going section and the path lengths of the beam i in the mosaic

crystal, li, are defined by

li ¼ T=�i: ð16Þ

In the case of neutron diffraction [K = 1 in expression (8)]

for the rotation about the  axis, the products Qijli can be

expressed as

Qijli ¼ Wð� Þij
�

sin �ij cos	ij cos 
ij

li

�2
ij

; ð17Þ

where the angles �, 	 and 
 are defined in Ro-92-(Fig. 2) and

Wð� Þij is the normalized Gaussian describing the mosaic

structure of the sample:

Wð� Þij ¼
sin �ij cos	ij cos 
ij
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The �ij are the corresponding Bragg angles and � refers to the

mosaic spread.

4. Comparison of the two concepts

According to Chang (2004, p. 79), expression (15) is the same

as that derived from Renninger’s simplest approach in Ro-00c.

But this is only partly correct, i.e. although expression (15)

shows some similarity with (13) – even in the case of neutron

diffraction [K = 1 in expression (8)] – the two expressions are

not identical. For simplicity, this will be shown for the case of a

forbidden primary reflection. From expression (15), we obtain

with Ro-92-(8a) and Ro-92-(19c)

�PG ¼
1
2
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whereas the corresponding dimensionless quantity

I
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i.e. apart from the factor 1
2 the two expressions (19) and (20)

differ in the path lengths, the distribution functions and

Lorentz factors. The �ttsi
are the extinction-corrected mean

thicknesses of the ideally perfect crystallites (10), whereas the

path lengths of the beam i in the mosaic crystal, li, are defined

by (16). The distribution function f ð Þ defined in (11) depends

on the mosaic spread – which of course is zero in the

case of a perfect crystal – and crystallite size of the sample as

well as on the divergence and wavelength spread of the inci-

dent beam, whereas the distribution function Wð� Þ ¼
Wð� ÞopWð� Þcoop, being the product of two Gaussians with

different heights and widths, depends on the mosaic spread

only. Even in this case, the mosaic spread would be the

dominating part in the width (12), f ð Þ would differ ap-

preciably from Wð� Þ. Last but not least, the Lorentz

factor L! defined in (9a) is not identical with

1=ðsin �coop cos	coop cos 
coopÞ, see Ro-92-(xB(a)2) and Ro-92-

(xB(b)2). All three factors may have a large influence on the

calculated intensities of a  scan. The multiple diffraction

patterns corresponding to expressions (19) and (20) will differ

appreciably. This difference will be even more obvious in the

case of a non-zero primary reflection, even if the interference

term in expression (13) is neglected.

5. Discussion

Chang’s statements cited in the Introduction that the appre-

ciable interference . . . is therefore dynamical rather than

kinematical . . . such a term cannot be obtained directly from

the power-transfer equation . . . the EM wavefields rather than

the reflection powers need to be considered is refuted by the

papers Ro-00c, Ro-03 and Ro-04. It is correct that the inter-

ference term cannot be obtained from the power-transfer

equation but, as was pointed out in Ro-00c, Ro-03 and more

explicitly shown in Ro-04, the interference term can be

deduced from the kinematical wavefields according to the

expressions (1)–(4), i.e. ‘the addition of the interference term to

the expression for integrated intensity’ is ‘mathematically

rigorous’. The necessary approximations used for the evalua-

tion of multiple diffraction intensity patterns according to x2

are without any doubt very crude, but so are the approxima-

tions used by Moon & Shull (1964) as well as those used in the

framework of the dynamic theory for the solution of the

multiwave processes.

The applicability of the kinematical concept represented in

the second section of this paper was proved in various papers.
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In these papers, it was demonstrated by many examples that

satisfactory qualitative and quantitative agreement between

experimental and theoretical multiple diffraction patterns are

obtained with the kinematical approximation presented in x2.
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